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Nodal Lines in the Cranked HFB Overlap Kernels
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Norm overlap kernels of the cranked Hartree-Fock-Bogoliubov states are studied in the context
of angular momentum projection. In particular, the geometrical distribution of nodal lines, i.e.,
one dimensional structures where the overlap kernels possess null value, is investigated in the three
dimensional space defined by the Euler angles. It is important to know the distribution of these
nodal lines when one attempts to determine the phase of norm overlap kernels.

The mean field approximation (MFA) is successful in
the description of nuclear systems [1, 2, 3], to which
the independent particle motion picture can be applied
[3, 4, 5]. Deformation and superfluidity (superconduc-
tivity) in nuclei are good examples [3] that are explained
by MFA. Although some essential correlations are taken
into account through MFA in an efficient manner, it fails
to incorporate other important features such as symme-
tries and relevant higher order correlations, which may be
necessary for studying nuclear structures further [1, 3].

Within MFA, physical quantities such as energy and
quadrupole moment are calculated as expectation values,
but there is room for further quantisations. For exam-
ple, angular momentum is not conserved when the ro-
tational symmetry is spontaneously broken by deformed
mean fields. As a consequence, the corresponding many-
body state has the form of a wave packet [6]. In the
cranking model [7], which describes a rotating mean field
in a semi-classical manner, the mean field state is written
as

|ψMFA(ω)〉 =
∑

IM

CI
M (ω)|IM〉. (1)

(The rotational frequency of the deformed mean field is
denoted by ω, while the quantum numbers for total an-
gular momentum and its magnetic quantum number are
expressed as I and M , respectively [22].) |ψMFA(ω)〉 usu-
ally has large fluctuations in its probability distribution
|CI

M |2. The width of the fluctuations becomes larger at
higher spin [6], which means |ΨMFA(ω)〉 possesses a more
averaged character. As a consequence, a simple applica-
tion of the cranking model faces difficulty, for instance,
in the description of the mixture of two different states
in band crossing regions [8].

A quantum mechanical description of collective rota-
tion is given in the generator coordinate method (GCM)
[9] with a choice of the Euler angles (Ω ≡ (α, β, γ))
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as generator coordinates. This method corresponds to
angular momentum projection (AMP) [10]. Rotational
symmetry spontaneously broken by the deformed mean
field can be restored by superposing the states that point
various orientations |ψ(Ω)〉 ≡ R̂(Ω)|ψMFA〉 . ( R̂(Ω) is a
rotational operator in the three dimensional space. See
Eq.(6) below.) A state with symmetry restoration |Φ〉 is
schematically expressed as

|Φ〉 =

∫

dΩf(Ω)|ψ(Ω)〉, (2)

with f(Ω) being the weight function that is determined
by the variational principle. This state |Φ〉, a superpo-
sition of the infinite number of degenerate states, corre-
sponds to a Nambu-Goldstone mode [11] in a finite sys-
tem.

In our previous works, we have numerically performed
AMP in attempts to describe high-spin states, such as
tilted rotation for high-K states in 178W [12] and the
wobbling motion in the multi-band crossing region in
182Os [13]. Through these works, we found it difficult
to perform numerical calculations of AMP in some situ-
ations. Such situations are observed to occur, for exam-
ple, in the calculations of AMP applied to cranked HFB
states at high spin (angular momentum ranging from 10
to 20h̄). A typical problem is negative values of the prob-
ability |CI

M |2 for I being odd integer, although the prob-
abilities for even I seem reasonably calculated [23]. (See
Fig.1.)

We first suspected the coarse mesh employed in the
numerical integration causes this difficulty, because the
integration in the AMP formula (See Eq.(5) below) is
discretised in numerical calculations with respect to the
Euler angles. The appropriate mesh size can be esti-
mated by using the uncertainty principle ∆I∆Ω ≃ h̄.
The constraint value 〈Ĵ1〉 = J and the fluctuation ∆I are
roughly related as ∆I ≃ J/2 at high spin [6, 14]. Then,
∆Ω = 2h̄/J . For example, ∆Ω ≃ 6◦ for J = 20h̄. The
appropriate number of mesh points are therefore about
60 for α, γ, and 30 for β. Even with this mesh size, how-
ever, the problem was observed to occur in performing
AMP when high spin states are considered (i.e.,J > 10h̄).
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FIG. 1: Probability distributions of angular momentum using two types of prescription to determine the sign of the norm
overlap kernels. The solid line represents the probability obtained by the old method while the dashed line is by the new
method. The constraint value on angular momentum is J = 14h̄. The left (right) panel shows even-I (odd-I) components.
Note the different scales in the first and second panels.

On the other hand, when the angular momentum is low
(J ≤ 10h̄), AMP is successfully performed, as expected.

We then suspect that the poor determination of the
sign of the norm overlap kernels, which will be given in
Eq.(7), may cause this problem. These kernels are nec-
essary in the AMP procedure, in which the state in the
projected space is expressed as

|ΨI
M 〉 =

∑

K

gI
K P̂

I
MK |ψMFA〉. (3)

The coefficients gI
K are determined by a variational equa-

tion
∑

K

(

HI
MK − EIN I

MK

)

gI
K = 0. (4)

Here, P̂ I
MK denotes the AMP operator, and matrices

N I
MK and HI

MK are defined as,

(

N I
MK

HI
MK

)

= 〈ψMFA|

(

P̂ I
MK

ĤP̂ I
MK

)

|ψMFA〉 (5)

=
2I + 1

8π2

∫

dΩDI∗
MK(Ω)〈ψMFA|

(

R̂(Ω)

ĤR̂(Ω)

)

|ψMFA〉.

A useful relation to note here is |CI
M |2 = N I

MM . The
measure in the three-dimensional Euler space dΩ is de-
fined as dα sinβdβdγ, and the integration intervals are
[0, 2π] for α and γ, and [0, π] for β. The rotational oper-

ator R̂(Ω) is given as

R̂(Ω) = exp(−iαĴz) exp(−iβĴy) exp(−iγĴz). (6)

The quantities 〈ψMFA|R̂(Ω)|ψMFA〉 and

〈ψMFA|ĤR̂(Ω)|ψMFA〉 in Eq.(5) are called norm and
energy overlap kernels, respectively. They are calculated
through formulae derived by Onishi et al [15, 16]. By

utilising the Onishi formulae, one can calculate the norm
overlap kernel as

N(Ω) = 〈ψMFA|R̂(Ω)|ψMFA〉 = σ(Ω)
√

detP (Ω), (7)

where σ(Ω) has values ±1. This ambiguity in sign comes
from the square root operation. We will come back to
this point shortly. The matrix P (Ω) is written [16],

P (Ω) = U †D†(Ω)U + V †DT (Ω)V, (8)

where U and V are matrices defined in the general Bo-
goliubov transformation [3] between canonical (cµ c†µ)
and quasi-particle annihilation and creation operators

(βi β
†
i ):

(

βi

β†
i

)

=

(

U∗
µi V ∗

µi

Vµi Uµi

)(

cµ
c†µ

)

. (9)

The presence of σ(Ω) implies that N(Ω) is a two-
valued function of Ω although it should be physically
well-defined and single-valued. Therefore, it is necessary
to choose an appropriate sign for given Ω. Two meth-
ods have been proposed [17, 18] to determine the sign of
σ(Ω), but due to its numerical feasibility the method of
Hara, Hayashi and Ring [17] is widely used. It makes use
of the continuity of the norm overlap kernel as a function
of the Euler angles Ω. Our calculations are based on this
method, and the procedure is explained below.

First of all, the origin in the Euler space is assumed to
have some certain phase. (In our case, σ(0) = +1.) Then,
by analytical continuation, the well-defined region is ex-
tended until the whole Euler space is covered. To achieve
this, the Euler space is divided into domains defined as
follows: Writing N(Ω) = r(Ω)eiθ(Ω), the argument θ(Ω)
and the norm r(Ω) are supposed to be continuous with
respect to Ω. Then, a point Ω = Ω(α, β, γ) belongs to a
domain Dn (n = 0,±1,±2, · · ·) when (n− 1

2 )π < θ(Ω) ≤

(n+ 1
2 )π. Inside each domain, σ(Ω) is determined to be
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+1 for even |n| and −1 for odd |n|. The boundary be-
tween Dn and Dn+1 is determined by tracking the con-
tinuity of θ(Ω) through the derivative information. In
this way, N(Ω) becomes well-defined as a single-valued
function in the entire domain D ≡

⋃

nDn (i.e., the whole
Euler space) .

As mentioned above, derivatives of the norm overlap
kernels are used to check the continuity of θ(Ω). A set
of formula derived by Onishi et al. is again useful to
calculate these derivatives [16], which are now given in
the form of logarithmic derivatives,

∂

∂Ω
ln〈ψMFA|R̂(Ω)|ψMFA〉 =

1

2

1

detP (Ω)

∂

∂Ω
detP (Ω).

(10)
Detailed forms for the formulae are given in Ref.[16].
(Sometimes the formulae are called generalised Wick’s
theorem [3].) Because the argument of the norm overlap
kernel is written as,

θ(Ω) = Im
[

ln〈ψMFA|R̂(Ω)|ψMFA〉
]

, (11)

the derivatives of θ(Ω) can be computed through Eq.(10).
Note that the derivative of the argument, θ′ = ∂θ

∂Ω , is
uniquely evaluated , i.e., being free from the sign ambi-
guity, because these formulae essentially make use of the
square of the norm overlap kernels (N(Ω)2) to eliminate
the ambiguity coming from σ(Ω).

To specify the domain Dn, we consider the follow-
ing two quantities that can be calculated from a pair
of neighbouring mesh points displaced by small distance
∆Ω, that is, (i) the difference between the two points,
corresponding to the approximate derivative of the ar-
gument θ(Ω) obtained by the two-point formula, which
is

a(Ω) ≡
θ(Ω + ∆Ω) − θ(Ω)

∆Ω
(12)

and (ii) the average of θ′ obtained through Eq.(10) be-
tween the two points, which is

b(Ω) ≡
θ′(Ω + ∆Ω) + θ′(Ω)

2
. (13)

Note that only a(Ω) suffers from the sign ambiguity, but
b(Ω) does not. We can now determine the relative sign of
the kernel between the points Ω and Ω+∆Ω by checking
the magnitude of the residue δθ(Ω) ≡ a(Ω)−b(Ω). When
the value of the residue is small, or behaves as δθ(Ω) ≃

− θ(3)(Ω̄)
12 ∆Ω2 with Ω < Ω̄ < Ω + ∆Ω, the neighbouring

point Ω + ∆Ω is judged to be in the same domain Dn

as the reference point Ω. On the contrary, the point
Ω + ∆Ω belongs to the different domain if the following
two conditions are satisfied: (i) δθ returns a significant

deviation from the behaviour of − θ(3)(Ω̄)
12 ∆Ω2; and (ii)

the deviation is removed after the sign σ(Ω + ∆Ω) is
inverted and the resultant residue follows the behaviour

of − θ(3)(Ω̄)
12 ∆Ω2.

According to the results in our calculations, the above
naive approach works for J ≤ 10h̄, but it seems to fail
when high spin states are considered (J > 10h̄). A typ-
ical symptom of the failure is seen as violation of the
positive definite nature in probability, as illustrated in
the right portion of Fig.1. In Fig.1, angular momentum
components in the cranked HFB states at J = 14h̄ are
plotted, that is,

W I ≡ Tr(N I) =

I
∑

M=−I

|CI
M (〈Ĵ1〉 = 14h̄)|2, (14)

where the matrix N I is defined in Eq.(5) and the trace
is taken with respect to the magnetic quantum number
M . With the above method to determine the sign (solid
lines in the figure), AMP seems to work properly when
the even-I distribution of W I is concerned (i.e., the left
portion in the figure), while in the right portion the posi-
tive definite nature of W I is violated slightly to an order
of magnitude of 10−3. One may say that such small nu-
merical errors can be neglected when proper physics is
extracted from the results. In fact, as far as the ground
state rotational bands are concerned (which consist of
only even-I components), it may be justified to ignore
these small errors. However, we would like to investigate
the cause of the errors in this paper because high-spin
physics involving odd-I states (e.g., high-K bands) be-
comes more and more important today.

The above problem (i.e., negative probability) implies
that the resultant norm overlap kernels do not satisfy
proper features as a physical quantity. A possible reason
for this defect is the assumption of the continuity of θ(Ω).
It is, in fact, singular on a nodal line, i.e., a set of points
where the norm overlap kernel becomes zero (r(Ω) =
0). The analytical continuation approach assumes the
continuity of norm overlap kernels (more precisely, of the
argument θ(Ω)), so that the method fails to work in the
neighbourhood of nodal lines.

To deal with the nodal lines in the context of the sign
determination, there are basically two approaches. One
is to find out all the nodal lines in the Euler space (from
the information of r(Ω) = 0). Once the locations of the
nodal lines are known, one can determine σ(Ω) without
any ambiguity because we can avoid the calculations of
the residue δθ between two points sandwiching the nodal
lines. The other is to calculate the residues for all the
possible directions (that is, ∆Ω =±∆α, ±∆β, and ±∆γ)
no matter where the nodal lines are. In this case, opti-
misation regarding to the values of the residues is made
by fixing σ(Ω + ∆Ω) in a manner of trial-and-error. In
this paper, the second approach is chosen for the sake of
simplicity in numerical calculations.

Although there is no need to know explicit information
about the geometry and topology of the nodal lines in
the present approach, we realise that such information
are very useful to clarify the nature and source of the
problem. Therefore, in this paper, we try to pin down
the locations of nodal lines, and succeed to find them for
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the first time. (Figs.2 and 3).

Let us first discuss the nodal lines we found, before
the detailed explanation is given on the new method to
determine the sign σ. To obtain norm overlap kernels,
we first perform principal axis cranked HFB calculations
with a constraint on angular momentum 〈Ĵ1〉 ≡ J (as
well as constraints on particle numbers). The pairing-
plus-Q·Q force is employed with the standard choices for
the force parameters and model space [19]. This HFB cal-
culation is performed in a fully self-consistent manner, so
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FIG. 2: Nodal lines at J = 12h̄ with low and high resolutions
for the mesh size.

that the gamma (triaxial) deformation is self-consistently
handled. The details of the method used for this calcu-
lation are explained in Ref.[20]. Then, as already men-
tioned above, the overlap kernels are obtained by means
of the Onishi formulae such as Eqs. (7) and (10). The
modified method for the phase determination, which will
be explained later, is employed to calculate the norm
overlap kernels. 170Dy is chosen in this study, as a well-
deformed rare-earth nucleus. (β = 0.295,∆p = 0.867
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FIG. 3: Nodal lines at J = 14h̄ with low and high resolutions
for the mesh size. The detailed structure of (B) is shown in
Fig.4.
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(MeV), ∆n = 0.652 (MeV) at J = 0 [21].) The yrast
line of this nucleus does not show any crossings at high
spin (≤ 20h̄) in our calculation. (The more complicated
structure of nodal lines may appear in the cranked HFB
states in band-crossing regions. Such states are planned
to be studied in future.)

Figs.2 and 3 present the nodal lines found in cranked
HFB states at J = 12h̄ and 14h̄, respectively. In the
figures, cubes are used to show and cover the regions
where nodal lines exist, for graphical convenience. The
size of the cubes is the same as the mesh size used in
AMP. It is given by ∆Ω = LΩ/NΩ, where Lα = Lγ = 2π
and Lβ = π. The number of the mesh points are Nα =
Nγ = 36 (72) and Nβ = 90 (180) for the low (high)
resolution calculations.

The positions of nodal lines are determined in the fol-
lowing approximation: on each face of the cube, after
the phase determination, the norm kernels are linearly
interpolated with respect to the Euler angles, that is,

Nlinear(Ω) ≃ c1α+ c2β + c3γ + c4. (15)

The coefficients ci are determined by the exact values
of N(Ω) at the four vertices on the face. The position
of the nodal line on the face is obtained by solving the
simultaneous equations of

Re[Nlinear] = Im[Nlinear] = 0. (16)

In the present study, no nodal lines are found in 0 ≤
J ≤ 10h̄. Nodal lines are found in 12h̄ ≤ J ≤ 20h̄ and
form a simple topology of closed loops (rings) without
knots. Their geometrical distributions seem to become
more complicated as the value of J becomes larger. It is
seen in Fig.3 that some of the nodal lines are missing in
the low resolution calculation but this result is due to the
simple linear approximation, Eq.(15), for the complicated
geometrical distribution of the nodal lines.

Symmetries seen in Figs.2 and 3, are expressed by

〈R̂(α, β, γ)〉 = 〈R̂(γ, β, α)〉∗ (17)

= 〈R̂(π − α, π − β, γ)〉∗=〈R̂(α, π − β, π − γ)〉∗ (18)

= 〈R̂(α+ 2π, β, α)〉 = 〈R̂(α, β, γ + 2π)〉. (19)

and are attributed to the properties possessed by the
principal-axis cranked HFB states [17] such as the sig-
nature. As a result of these symmetries (especially, Eqs.
(17) and (18)), there are four identical sets of nodal lines
in Figs.2 and 3. In other words, there is essentially only
one nodal line (ring) out of the four shown in Figs.2 and
3(A), while there are sixteen nodal rings in Figs.3(B) but
just four of them are essential. Two out of these four es-
sential rings form a concentric circles, as shown in the
second portion of Fig.4(b). (Note the symmetry on the
boundary is given in Eqs.(19).) Although these rings look
to be completely two-dimensional, that is, confined in the
constant β plane, one can tell their three-dimensional
structure with a careful look at the figures.

Let us now explain the details of the new approach to
determine the sign σ(Ω) below. First of all, the third
order derivatives of the norm overlap kernels are chosen
to be a measure of the “smoothness” of the kernels. In
fact, such a quantity is practically easily computed in
our calculations where the norm overlap kernel and its
first order derivatives are already obtained. Using the

Taylor expansions for N(Ω + ∆Ω) and ∂N(Ω+∆Ω)
∂Ω , the

third derivative between two points Ω and Ω′ = Ω+∆Ω is
approximately obtained up to an order of O(∆Ω), which
is denoted here as D3(Ω

′,Ω),

D3(Ω
′,Ω) =

6

(∆α)2

{

∂N

∂α
(Ω′) +

∂N

∂α
(Ω)

}

(20)

−
12

(∆α)3
{N(Ω′) −N(Ω)} .

The above expression corresponds to a case when two
points are displaced along the α coordinate, i.e., Ω =
(α, β, γ) and Ω′ = (α + ∆α, β, γ). Similar expressions
hold for a pair of adjacent points displaced in the β or γ
direction. Note that D3 is a complex quantity in contrast
to the residue δθ, which is a real quantity. An advantage
to extend the residue δθ to the complex D3 is that the
continuity is checked not only by θ(Ω) but also by r(Ω).
D3 is particularly useful in the vicinity of the nodal lines
where ln r(Ω) diverges so quickly. In this case, δθ can
also change rapidly to return the large value as if the
boundary of domains appeared to be detected. With
all the available information on the continuity both in
the norm and argument, the boundary between domains
Dn and Dn+1 is determined with more certainty even
in the vicinity of the nodal lines. Next, starting from
Ω = (0, 0, 0), where σ = 1 is assumed, we determine one
by one the sign of σ for the adjacent mesh points so that
|D3| takes a smaller value. As we proceed, conflicting
assignments in sign are seen for a point Ω = (α, β, γ).
In other words, when D3 is evaluated along two different
links, say links between Ω and Ω + ∆Ω = (α±∆α, β, γ),
the signs at Ω are sometimes inconsistent. In this case,
we use “reliability” to decide which sign assignment has
priority. Although there is no unique way to define the
“reliability”, our choice for the definition is the ratio of
|D3| between the sign-flipped and unflipped cases (the
smaller value should be in the denominator): larger val-
ues of this ratio indicate more reliability. This proce-
dure is performed for all the links and optimisation on
D3 is carried out. The whole optimisation procedure is
repeated many times until the average reliability is con-
verged. The essential point in this new method is that
we attempt to proceed with the analytical continuation
through the only links where a reliable determination of
the relative sign seems possible. With this requirement,
many problematic points like those near the nodal lines
are circumvented or isolated from the analytical contin-
uation procedure.

This new method is quite powerful especially when
one attempts to determine the sign of norm overlap ker-
nels in the presence of the nodal lines. An advantage
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FIG. 4: Detailed pictures of the essential nodal rings in Fig.3(B) with respect to β.

FIG. 5: Probability distributions for J = 12h̄ - 20h̄ with the
modified phase determination method. The upper (lower)
panel shows the profile for even-I (odd-I) components.

of the method is that we do not need to find the nodal
lines explicitly. To confirm the advantage, we analysed
where the disagreements in the sign determination hap-
pen between the previous naive method (in which the
signs are determined one by one in a scheduled simple
order along straight lines) and the present new method.
We then found that the discrepancies are concentrated in
the vicinity of regions where nodal lines exist. The im-
provement in the sign determination by the new method
is clearly demonstrated in Fig.1 as the recovery of the
positive definiteness of the probability in the odd-I distri-
butions ofW I . A disadvantage of this new method is that
it is more time-consuming than the previous method.
However, we found that the computation time has been
greatly improved with the combination of the two meth-

ods: the initial sign determination is made by the first
naive approach and subsequently the new optimisation
method is carried out.

In the case of 170Dy, we have checked that this newly
developed method improves the sign determination up
to J = 14h̄. Although several doubtful sign assignments
start to occur at J = 16h̄ even for the higher resolution,
these potential mistakes do not seem to affect positive
definiteness in probabilities (|CI

M |2 ≥ 0) and the sum
rule,

∑

I=0

W I = 1, (21)

up to J = 20h̄. In Fig.5, the results of the modified
probability distributions are plotted. The integrals of
each probability distribution curve, i.e., the probability
sum rule, are presented in Table I. W I satisfies the sum
rule quite well up to I = 34h̄. The problem of nega-
tive probability does not appear until I = 31h̄. Beyond
I = 31h̄ for the odd-I components (and beyond I = 34h̄
for the even-I), all W I become negative. The reason for
this behaviour is attributed to the discretisation approx-
imation in the integration. With ∆α = ∆γ = 5◦ and
∆β = 1◦, the integration in angular momentum projec-
tion manages to be valid up to

I ≃
1

3

(

2h̄

∆α
+

2h̄

∆β
+

2h̄

∆γ

)

= 32h̄. (22)

The divergence in the curves of J = 12h̄ (beyond I > 34h̄
for the even-I graph and I > 33h̄ for odd-I) comes from
the same reason. To overcome even these difficulties,
a finer mesh size should be employed. Such a line of
investigation is now in progress.

In conclusion, we have studied the distribution of
zeros of norm overlap kernels of cranked HFB states.
Such zeros form one dimensional structure in the three-
dimensional space defined by the Euler angles, so that
we call it a “nodal line”. The existence of nodal lines
is numerically demonstrated for the first time, and we
have found they emerge as spin increases and their struc-
ture becomes more complicated as angular momentum
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J ≡ 〈Ĵ1〉HFB 12h̄ 14h̄ 16h̄ 18h̄ 20h̄

P 0.998 0.991 0.981 0.965 0.939

TABLE I: The total probability sum P =
∑

I<35h̄

W
I shown in Fig.5.

becomes larger (J > 10h̄). We have shown that it is
important to know the distributions in order to correct
wrong assignments for the sign of norm overlap kernels.
The correction is essential for angular momentum pro-
jection to be performed with high accuracy for cranked
mean-field states.
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